Cheaper than printing it out: buy the paperback book.

Out of Control
Chapter 20: THE BUTTERFLY SLEEPS

The lap game peaked in popularity a decade ago. It is a spectacular outdoor game that advertises the power of cooperation. The facilitator of the lap game takes a group of 25 or more people and has them stand fairly close together in a circle, so that each participant is staring at the back of the head of the person in front of him. Just picture a queue of people waiting in line for a movie and connect them in a tidy circle.

At the facilitator's command this circle of people bend their knees and sit on the spontaneously generated knee-lap of the person behind them. If done in unison, the ring of people lowering to sit are suddenly propped up on a self-supporting collective chair. If one person misses the lap behind him, the whole circling line crashes. The world's record for a stable lap game is several hundred people.

Auto-catalytic sets and the selfish Uroborus snake circle are much like lap games. Compound (or function) A makes compound (or function) B with the aid of compound (or function) C. But C itself is produced by A and D. And D is generated by E and C, and so on. Without the others none can be. Another way of saying this is to state that the only way for a particular compound or function to survive in the long run is for it to be a product of another compound or function. In this circular world all causes are results, just as all knees are laps. Contrary to common sense, all existences depend on the consensual existence of all others.

As the reality of the lap game proves, however, circular causality is not impossible. Tautology can hold up 200 pounds of flesh. It's real. Tautology is, in fact, an essential ingredient of stable systems.

Cognitive philosopher Douglas Hofstadter calls these paradoxical circuits "Strange Loops." As examples, Hofstadter points to the seemingly ever rising notes in a Bach canon, or the endlessly rising steps in an Escher staircase. He also includes as Strange Loops the famous paradox about Cretan liars who say they never lie, and Gödel's proof of unprovable mathematical axioms. Hofstadter writes in Gödel, Escher, Bach: "The 'Strange Loop' phenomenon occurs whenever, by moving upwards (or downwards) through the levels of some hierarchical system, we unexpectedly find ourselves right back where we started."

Life and evolution entail the necessary strange loop of circular causality -- of being tautological at a fundamental level. You can't get life and open-ended evolution unless you have a system that contains that essential logical inconsistency of circling causes. In complex adapting processes such as life, evolution, and consciousness, prime causes seem to shift, as if they were an optical illusion drawn by Escher. Part of the problem humans have in trying build systems as complicated as our own human biology is that in the past we have insisted on a degree of logical consistency, a sort of clockwork logic, that blocks the emergence of autonomous events. But as the mathematician Gödel showed, inconsistency is an inevitable trait of any self-sustaining system built up out of consistent parts.

Gödel's 1931 theorem demonstrates, among other things, that attempts to banish self-swallowing loopiness are fruitless, because, in Hofstadter's words, "it can be hard to figure out just where self-referencing is occurring." When examined at a "local" level every part seems legitimate; it is only when the lawful parts form a whole that the contradiction arises.

In 1991, a young Italian scientist, Walter Fontana, showed mathematically that a linear sequence of function A producing function B producing function C could be very easily circled around and closed in a cybernetic way into a self-generating loop, so that the last function was coproducer of the initial function. When Kauffman first encountered Fontana's work he was ecstatic with the beauty of it. "You have to fall in love with it! Functions mutually making one another. Out of all function space, they come gripping one another's arms in an embrace of creating!" Kauffman called such a autocatalytic set an "egg." He said, "An egg would be a set of rules having the property that the rules they pose are precisely the ones that create them. That's really not crazy at all."

To get an egg you start with a huge pool of different agents. They could be varieties of protein pieces or fragments of computer code. If you let them interact upon each other long enough, they will produce small loops of thing-producing-other things. Eventually, if given time and elbowroom the spreading network of these local loops in the system will crowd upon itself, until every producer in the circuit is a product of another, until every loop is incorporated into all the other loops in massively parallel interdependence. At this moment of "catalytic closure" the web of parts suddenly snaps into a stable game -- the system sits in its own lap, with its beginning resting on its end, and vice versa.

Life began in such a soup of "polymers acting on polymers to form new polymers," Kauffman claims. He demonstrated the theoretical feasibility of such a logic by running experiments of "symbol strings acting on symbol strings to form new symbol strings." His assumption was that he could equate protein fragments and computer code fragments as logical equivalents. When he ran networks of bits of code-which-produce-code as a model for proteins, he got autocatalytic systems that are circular in the sense of the lap game: they have no beginning, no center, and no end.

Life popped into existence as a complete whole much as a crystal suddenly appears in its final (though miniature) form in a supersaturated solution: not beginning as a vague half-crystal, not appearing as a half-materialized ghost, but wham, being all at once, just as a lap game circle suddenly emerges from a curving line of 200 people. "Life began whole and integrated, not disconnected and disorganized," writes Stuart Kauffman. "Life, in a deep sense, crystallized."

He goes on to say, "I hope to show that self-reproduction and homeostasis, basic features of organisms, are natural collective expressions of polymer chemistry. We can expect any sufficiently complex set of catalytic polymers to be collectively autocatalytic." Kauffman was creeping up on that notion of inevitability again. "If my model is correct then the routes to life in the universe are boulevards, rather than twisted back alleyways." In other words, given the chemistry we have, "life is inevitable."

continue...