Cheaper than printing it out: buy the paperback book.

Out of Control
Chapter 9: POP GOES THE BIOSPHERE

Directly beneath the wilderness of savanna and forest, the farm, and the modern apartments of the biospherians, lies the other face of Bio2: the mechanical "technosphere." The technosphere is the scaffolding put in place to help Bio2 pop. At several places in the wilderness, stairs wind down to a cavernous basement stuffed with basementish fixtures. Fifty miles of color-coded pipes as thick as an arm wind along the wall. There are huge ductworks right out of the movie Brazil; miles and miles of electrical wiring; workshops full of heavy-duty tools; hallways crowded with threshing and milling machines; shelves of spare parts; switchboxes, dials, vacuum blowers; over 200 motors, 100 pumps, and 60 fans. It could be the inside of a submarine or the backside of skyscraper. The territory is industrial grunge.

The technosphere supports the biosphere. Huge blowers circulate the entire air of Bio2 several times in one day. Heavy pumps move the rainwater. The motors of the wave machine run day and night. Machines hum. This unabashedly manufactured world is not outside Bio2 but inside its tissue, like bone or cartilage, an integral part of the greater organism.

For example, Bio2's coral reef would not have worked without an eerie backroom in the basement where the algae scrubbers hide. The scrubbers were table-wide shallow plastic trays filled with a pool of algae. The whole room was flooded with the same type of halide sunlamps as illuminated artificial coral reefs in museums. The scrubbers were in fact the mechanical kidneys of the Bio2 coral reef. They performed the same function as a pool filter: to clear the water. The algae consumed waste products from the reef and under the intense artificial sunlight they proliferated in stringy green mats. The green strands soon clogged the scrubber; and just like a pool or aquarium filter, the scrubber needed to be scraped clean every ten days by some poor schmuck -- another job for the eight humans. Cleaning the algae scrubbers (the harvest became compost) was the most despised assignment in Bio2.

The nerve center of the whole system was the computer room run by an artificial cortex of wires, chips, and sensors from around Bio2. Every valve, every pipe, and every motor of the infrastructure was simulated in a software network. Very little activity in the ark, either natural or man-made, happened without the distributed computer knowing about it. Bio2 responded as if it was one beast. About a hundred chemical compounds were continuously measured in the air, soil, and water throughout the whole structure. A potential profit-making technology that SBV imagined spinning off the project was sophisticated environmental-monitoring techniques.

Mark Nelson got it right when he said that Bio2 was the "marriage of ecology and technics." That's the beauty of Bio2-it's a fine example of ecotech, the symbiosis of nature and technology. We don't know enough yet how to invent biomes without installing pumps. But by using the scaffolding of pumps now, we can try the system out and learn.

To a large degree it's a matter of learning a new form of control. Tony Burgess said, "NASA goes about by optimizing resource utilization. They take wheat and optimize the environment for the production of wheat. But the problem is when you put together a whole bunch of species you can't optimize each species separately, you have to optimize the whole thing. Doing this one at a time you become dependent on governance by engineering. SBV hopes that you can remove governance by engineering and switch it to governance by biology. Which ultimately should be cheaper. You may lose some optimization of production, but you gain independence from the technics."

Bio2 is a gigantic flask for ecological experiments that require more control over the environment than could (or should) be done in the wild. Individual lives can be studied in a laboratory. But ecological life and biospheric life require a more monumental room to view things in. For instance, in Bio2 a single species can be introduced or deleted with great confidence knowing that no other species have been altered -- all in a space large enough for something "ecological" to happen. "Biosphere 2," said John Allen, "is a cyclotron for the life sciences."

Or maybe Bio2 is really a better Noah's ark. A futuristic zoo within one large cage where everything runs wild, including the observing Homo sapiens. The species are free be themselves and to coevolve with others into anything they want.

At the same time, space cowboys see Bio2 as a pragmatic step on a spiritual journey off the planet into the galaxies. As space technology, Bio2 is the most thrilling news since the moon landings. NASA, after routinely pooh-poohing the enterprise in its conceptual stages, refusing to help out at any time, has had to swallow their pride and acknowledge that, yes, there is something useful here. Out-of-control biology has a place.

All three spirits are really manifestations of the same metamorphosis best described by Dorion Sagan in his book Biospheres:

The "man-made" ecosystems known as biospheres are ultimately "natural" -- a planetary phenomenon that is part of the reproductive antics of life as a whole....We are at the first phase of a planetary metamorphosis,...[the] reappearance of individuality at a hitherto unsuspected scale: not of reproducing microorganisms, or plants or animals, but of the Earth as a living whole ...

Yes, humans beings are involved in this reproduction, but are not insects involved in the reproduction of many flowers? That the living Earth now depends upon us and our engineering technology for its reproduction does not invalidate the proposition that biospheres, ostensibly built for human beings, represent the reproduction of the planetary biosystem....

What is definitive success? Eight people living inside it for two years? How about ten years, or a century? In fact, biosphere reproduction, the building of dwellings that internally recycle all that is needed for human life, begins something whose end we cannot foresee.

When everything works, and free time loosens up daydreams, the biospherians can wonder, Where does all this lead? What's next? A Bio2 oasis at the South Pole? Or a bigger Bio2 with many more bugs and birds and berries? The most interesting question may be: how small can a Bio2 be? Those master miniaturists, the Japanese, are crazy over Biosphere 2. In one poll conducted in Japan, over 50 percent of the population recognized the project. To those used to claustrophobic living quarters and the isolation of island living, a mini-Bio2 seems positively charming. In fact, one government department in Japan has announced plans for a Biosphere J. The "J" stands not for Japan (they say), but for Junior, as in tinier. Official sketches show a small warren of rooms, lit by artificial lights and stuffed with compact biological systems.

The ecotechnicians who built Bio2 have figured out the basic techniques. They know how to seal the glass, schedule perpetual subsistence crops in a very small plot, recycle their wastes, balance their atmosphere, live without paper, and get along inside. That's a pretty good start for biospheres of any size. The future should birth Bio2s in all sizes and varieties, housing every combination of species. As Mark Nelson told me, "In the future there will be an enormous proliferation of niches for biospheres." Indeed, he sees varieties of biospheres of different sizes and composition, as if they were different species of biospheres, competing over territory, mingling to share genes, and hybridizing in the manner of biological organisms. Planets would be settled with them, and every city on Earth would have one, for experiments and education.

continue...